
S
P

E
E

C
M

AT I C S H O W T O
 S

E
R

IE
S

make
the most
of data
surplus

H O W T O

W W W. S P E E C H M A T I C S . C O M

Part 1
What to do with
all that data?

For most of the history of
machine learning, data has
been a precious commodity.

By necessity, the field has had to spend time
developing techniques that made optimal use
of small amounts of data. Of late, however, large
amounts of data are becoming increasingly available.
On a global scale, there are commentators talking
about data following Moore’s law, with the amount of
raw data doubling roughly every two years.

This is great, right? With the explosion in the use
of deep learning, which is even more data hungry
than more traditional machine learning methods,
more data will help us learn better, more nuanced
models! Well yes, but only up to a point.

M A K I N G T H E M O S T O F D A T A S U R P L U S P A R T 1 : W H A T T O D O W I T H A L L T H A T D A T A ?

2 3W W W. S P E E C H M A T I C S . C O MS P E E C H M A T I C S H O W T O S E R I E S

The immediate problem is that of computational
resource. The demands of modern deep learning systems
have already meant that traditional CPUs are insufficient
for the task of training models. There are also signs that
Moore’s law for computational resource is slowing down,
with physical limitations starting to have an impact and
costs have been rising (see Rock’s law) even as compute
gains are released.

The computational limits have been
circumvented to some degree by

mass parallelism of parts of model
training by using GPUs - graphics cards
developed originally to produce
cutting-edge video game visuals
but now repurposed as the core
engine driving the latest AI revolution.
There are now even custom build
tensor processing units that Google
has made available on their cloud
platforms, with academic papers
reporting results of models built on
hundreds of these devices.

However, even these hardware
accelerants have their limits. Amdahl’s
law tells us that speeding up one
individual part of your compute
pipeline will start to have diminishing
returns fairly rapidly, so even if more
speculative technologies such as
quantum computing come along, we
will still have a bottleneck somewhere
(disk I/O, or data transfer from standard
CPU to the hardware accelerator are
often candidates, in our experience).
At some point, the sheer mass of
data available to an AI engineer will
overwhelm their available compute
resources. I won’t predict exactly
when that will happen - predictions on
technological topics tend to come
back and haunt their creators - but I
believe it will come.

The CPUs cannae
take it, Captain!

So far, I have just
talked about training.

At inference time, more problems
crop up. In order to make better use
of more data, typically we increase
our model sizes, so we have more
parameters to better learn the
data. That then leads to a bigger
computational footprint when those
models are in use. At a time when AI is
trying to break into lower specification
and low powered devices in the
Internet of Things and mobile phones,
larger models that require more power
are not welcome.

M A K I N G T H E M O S T O F D A T A S U R P L U S

4 5W W W. S P E E C H M A T I C S . C O M

P A R T 1 : W H A T T O D O W I T H A L L T H A T D A T A ?

EXPERT OPINION

Even hardware accelerants
have their limits.

S P E E C H M A T I C S H O W T O S E R I E S

Does all that
data even help?

The previous discussion has the implicit assumption
that more data leads to better models and artificial
intelligence systems. This has led to the presumption
that always throwing more data at a problem will lead
to better results. However, that is not necessarily the
case. If your data is of poor quality, adding more of it
may actually harm your performance as your model
will learn irrelevant or even incorrect associations.

Alternatively, if your data is of high
quality but all very similar to each

other, then adding more of it will not
help – your model will have learned
one particular pattern very well, but
slightly atypical examples at run time will
confuse it.

To continue advancing the field we are
going to have to start thinking about
solutions to our excess of data. I will
cover three possibilities. The first is how
to train on all of that data (Single Pass
Training), the second is how to reduce
your data down to just the examples
that are most important (Filtering out
rubbish) and the third is how to use an
excess of data in one domain to improve
performance in a different domain
(Domain Adaptation).

Single Pass Training

The simplest solution to having too
much data to train on is to break the
paradigm of training to convergence and
where progress is measured in terms of
the number of epochs completed. An
epoch is a full pass over all your available
data, updating your parameters as
you go along. Typically, you use many
epochs to converge your model towards
an optimal solution, where convergence
is defined as occurring when an epoch
no longer improves your model on some
validation dataset compared to the
previous epoch.

If you have very large amounts of data,
this level of iteration to convergence
over your training set may not be
possible within your hardware and time
constraints. This is starting to become
the norm in machine translation for
example, where users are talking in terms
of number of hours or days a model has
been trained for, rather than the number

of epochs. To make this work practically,
you need to have regular checkpointing,
rather than waiting until the end of
an epoch as was historically standard
practice. This means outputting interim
models at regular points – perhaps after
every few hours or after a set number
of pieces of data have been processed
– then benchmarking those models
against a validation set to track progress
to convergence and also whether any
hyperparameters need to be dynamically
adjusted, such as learning rate decay.

These changes are not yet available
‘off the shelf’ in most machine learning
toolkits. In the main, the paradigm of
training multiple epochs over your data
still rules. You may need to either hack
the code to make it possible or adjust
how you deal with your data - perhaps
chunking your data into pieces and
feeding in one at a time, ‘tricking’ your
model into thinking each one is a full
epoch.

In the extreme, this can be pushed to
single pass training, where your models
only ever see any individual piece of
data once. This can work if your data
is all of equal quality and relevance to
your use case and there are no particular
constraints on the order you train over it.

However, it is rarely the case that all
of your data is of equal quality and
relevance for your use case, which
brings us to the next couple of tricks.

M A K I N G T H E M O S T O F D A T A S U R P L U S

6 7W W W. S P E E C H M A T I C S . C O M

P A R T 1 : W H A T T O D O W I T H A L L T H A T D A T A ?

KEY POINT

This is a key point, so we’ll state it again:
More data does not always lead

to improved performance.

S P E E C H M A T I C S H O W T O S E R I E S

Part 2

Filtering
out rubbish

The truth is that a lot of your data is
probably bad data. That is not your fault.
You did your best.

But sometimes your HTML parser barfs on a particular
malformed website. Or an angry user abuses your
web feedback form. These things happen, but
regardless of cause, you don’t want to train on that
particular piece of data. If you could filter out all that
rubbish you would not only reduce the amount of
computational resource you need to build models
on it, you would also end up with better models as
they won’t be misled by training on bad examples.

This is becoming a big enough task, that this year’s
World Machine Translation conference had a corpus
filtering competition for machine translation data.
The task was to take 1 billion words of supposedly
parallel English-German data that had been roughly
scraped from the web and automatically filter it down
to smaller corpus sizes. I entered that competition
as part of a team and have some tips coming out the
back of it.

M A K I N G T H E M O S T O F D A T A S U R P L U S P A R T 2 : F I L T E R I N G O U T R U B B I S H

8 9W W W. S P E E C H M A T I C S . C O MS P E E C H M A T I C S H O W T O S E R I E S

M A K I N G T H E M O S T O F D A T A S U R P L U S

1 0

P A R T 2 : F I L T E R I N G O U T R U B B I S H

1 1W W W. S P E E C H M A T I C S . C O M

First off, start simple.

You don’t necessarily need to break
out Tensorflow and start training deep
convolutional Siamese networks to
discriminate your good from your bad
data immediately. Our first step was
to devise a bunch of simple rules that
quickly eliminated the worst examples.
The nature of these rules will depend
on your particular use case, so use your
common sense and old-fashioned
eyeballing of the data.

For our machine translation corpus,
for example, we could pretty quickly
see that some sentences were not
correct translations of one another
simply because their lengths were
very different, so we eliminated any
sentence pairs for which one side was
much longer than the other. Other rules
were similar – we used edit distance to
check for non-translation, simple regex
to check digits matched, an off the shelf
language identifier to eliminate badly
labelled data – and quickly we had
reduced our corpus to less than a fifth
of its original size.

Once you have reduced your corpus
using simple rules, there may be more to
be gained by more intelligent methods.
One of the more straightforward
methods is to use your final task as a way
to filter your training data. By this I mean
train a model to solve whatever problem
you are attempting to solve and then
use that model on your training data to
identify good and bad data examples.

So far, the discussion has considered
pre-processing the data, but the
technique of removing low/high
classifier confidence examples is also
starting to be used on the fly during
training. Recent papers have shown
great benefit in adapting which data
you train on as you go along. Between
epochs, you could check which of your
training data you are struggling on and
overemphasise those in the next epoch,
whilst down-weighting those that the
model is already very confident in.

Curriculum learning is a recent advance
that takes this a step further and orders
the training examples you present to
your model training, with simple ones
coming earlier in the training regime
and more difficult ones later. This can be
compared to how we learn at school or
university – starting from more simple,
general examples then gradually moving
to more nuanced and difficult tasks as we
learn more. The early examples lead to
generalised abstractions, which are then
useful in understanding and modelling
the more complex or unusual examples
later in the curriculum.

S P E E C H M A T I C S H O W T O S E R I E S

AN EXPLAINATION BY EXAMPLE

This is probably best explained by
example. Let’s assume we are building
an ant photograph classifier. We have lots
of photographs of different ants, each
labelled with the species of the ant in the
picture. However, we notice that some of
the photographs have been mislabelled,
and some are not even of ants at all! Once
we have used simple rules to eliminate the
worst offenders, we are left with a smaller
dataset that we still believe to have
some bad data in it. So, we build an ant
photograph classifier on the mixed data
we have. We may choose to make this a
smaller than normal model or build on a
randomly selected subset of the data to
save time and resources. We then apply
that classifier on our source data, applying
probabilistic labels to each photograph.
There are two types of data we may
want to remove.

The first is that for which the classifier
disagrees very strongly with the data
label. In this case, the data label is
probably incorrect (perhaps the

photograph is of a termite rather than an
ant?) and so that data should be removed.
We should note though that we do have
to be careful that we aren’t removing
correctly labelled examples that happen
to be unusual (for example an Army Ant
photographed from below when most of
the images are from above). These unusual
examples are extremely valuable to keep –
some form of tradeoff often needs to take
place here which you will need to tune for
your own use case.

The second is that you might actually want to
remove some of the examples for which the
classifier very strongly agrees with the data.

In this case training on that particular
example is probably not adding much to
the overall model, and by removing it you
will be allowing your model to generalise
better, by instead emphasising the diversity
of your dataset. Keeping just the examples
that the classifier already does well on will
not give the best overall performance in
real world tests.

Part 3 Domain
adaptation
It may be that your large amounts of data
are just not the type of data you think
you need. Don’t despair!

There are ways you may be able to use it anyway.
In my primary field of speech recognition, this is a
common occurrence – I may have lots of recordings
of people speaking on broadcast news, for example,
but few examples of people talking on a telephone,
which may be the area I really want to target. In
this case, you need to leverage that larger ‘out-of-
domain’ corpus by taking the smaller ‘in-domain’
corpus as a reference.

M A K I N G T H E M O S T O F D A T A S U R P L U S P A R T 3 : D O M A I N A D A P T A T I O N

1 2 1 3W W W. S P E E C H M A T I C S . C O MS P E E C H M A T I C S H O W T O S E R I E S

M A K I N G T H E M O S T O F D A T A S U R P L U S

1 4

P A R T 3 : D O M A I N A D A P T A T I O N

1 5W W W. S P E E C H M A T I C S . C O M

In the simple case, this may just mean
paying attention to any metadata you

have. If you have data prelabelled in
different categories, you may be able to
simply select data that is close enough to
your target domain that way. However,
this throws away a lot of the use that
the larger pool of out-of-domain data
might offer.

The next step – which we at
Speechmatics regularly use in our
language modelling – is domain filtering.
This means taking your small in-domain
corpus and filtering your larger out-of-
domain corpus against it to find the
subset of the data that is most similar.
For language modelling we do this by
entropy filtering. Entropy filtering works
by building small language models on
both your in and out-of-domain corpora.
Then you measure how well each
model performs when modelling every
sentence in the out-of-domain corpus.
Those sentences for which the difference
between these two measures is below
a certain threshold are kept and the
others discarded. This then leads to
a smaller corpus which actually gives
better results than using the entire
out-of-domain corpus, as well as a
smaller training footprint.

An even further step is to map
your out-of-domain data into
the same space as your in-
domain data.

Correlation Alignment (CORAL) is a
‘frustratingly easy’ first technique you
could use. It’s called ‘frustratingly easy’
because it can be implemented in as
little as 4 lines of MATLAB code and
outperforms many more complex
methods! The core algorithm can be
understood as first whitening your out-
of-domain data then, re-colouring it with
the covariance of the in-domain data
and has been shown to be surprisingly
effective in fields such as object
recognition from images.

Other methods have also been shown
to be effective – such as subspace
alignment, where both in and out-of-
domain data are mapped to a shared
subspace and that mapping is iteratively
repeated until the distance between
the two datasets is minimised. The
performance is typically improved
by use of ‘anchor’ examples which
can be used to measure how well
the two datasets have mapped onto
one another. Facebook’s MUSE uses
similar techniques to map vectoral
representations of words in different
languages onto one another, with
improved performance by providing an
initial seed dictionary of translations.

Finally, if you have already trained a
model for a different task using your
large dataset, you can use transfer
learning. This means training a model for
a particular task and/or domain and then
using that model as the basis for your
target task or domain. In the simplest
case, this means training a model
on your out-of-domain dataset then
retraining the weights on your in-domain
dataset, essentially using the larger
dataset to produce sensible initial values
for your final model.

A really interesting example of transfer
learning I found recently took this even
further. The task was discrimination
of audio clips into classes, with not
much data available to train on. Rather
than try to leverage audio data, they
took the interesting step of stepping
really far out-of-domain – into image
recognition. They took spectrographic
representations of their audio signals,
turned them into images with a green
tint, then used a pre-trained and very
accurate image classifier as the basis for
the audio classifier! The system trained
to classify images was able to break the
spectrogram images into useable sub
features sufficiently well to massively
improve performance over just using the
limited dataset. This really shows that
if you have sufficient data in any task,
it may be worthwhile to leverage it in
completing any other limited data tasks
you have.

S P E E C H M A T I C S H O W T O S E R I E S

Conclusions We all know data is hugely valuable
to those of us training artificial
intelligence systems of any kind.
Too much data can feel like a burden,
either in training time, hardware
requirements or simply output
model size. However, I hope that
over our three-part series I have
shown you some tips for how to
deal with that data. Whether that be
reducing the data size into a highly
efficient subset or using the data
to bootstrap models in radically
different domains and tasks…

…I hope you can learn to
love your big data again.

M A K I N G T H E M O S T O F D A T A S U R P L U S C O N C L U S I O N

1 6 1 7W W W. S P E E C H M A T I C S . C O MS P E E C H M A T I C S H O W T O S E R I E S

