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Part 1
What to do with  
all that data?

For most of the history of  
machine learning, data has  
been a precious commodity.

By necessity, the field has had to spend time 
developing techniques that made optimal use 
of small amounts of data. Of late, however, large 
amounts of data are becoming increasingly available. 
On a global scale, there are commentators talking 
about data following Moore’s law, with the amount of 
raw data doubling roughly every two years.

This is great, right? With the explosion in the use 
of deep learning, which is even more data hungry 
than more traditional machine learning methods, 
more data will help us learn better, more nuanced 
models! Well yes, but only up to a point.
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The immediate problem is that of computational 
resource. The demands of modern deep learning systems 
have already meant that traditional CPUs are insufficient 
for the task of training models. There are also signs that 
Moore’s law for computational resource is slowing down, 
with physical limitations starting to have an impact and 
costs have been rising (see Rock’s law) even as compute 
gains are released.

The computational limits have been 
circumvented to some degree by 

mass parallelism of parts of model 
training by using GPUs - graphics cards 
developed originally to produce 
cutting-edge video game visuals 
but now repurposed as the core 
engine driving the latest AI revolution. 
There are now even custom build 
tensor processing units that Google 
has made available on their cloud 
platforms, with academic papers 
reporting results of models built on 
hundreds of these devices.

However, even these hardware 
accelerants have their limits. Amdahl’s 
law tells us that speeding up one 
individual part of your compute 
pipeline will start to have diminishing 
returns fairly rapidly, so even if more 
speculative technologies such as 
quantum computing come along, we 
will still have a bottleneck somewhere 
(disk I/O, or data transfer from standard 
CPU to the hardware accelerator are 
often candidates, in our experience). 
At some point, the sheer mass of 
data available to an AI engineer will 
overwhelm their available compute 
resources. I won’t predict exactly 
when that will happen - predictions on 
technological topics tend to come 
back and haunt their creators - but I 
believe it will come.

The CPUs cannae 
take it, Captain!

So far, I have just  
talked about training.

At inference time, more problems 
crop up. In order to make better use 
of more data, typically we increase 
our model sizes, so we have more 
parameters to better learn the 
data. That then leads to a bigger 
computational footprint when those 
models are in use. At a time when AI is 
trying to break into lower specification 
and low powered devices in the 
Internet of Things and mobile phones, 
larger models that require more power 
are not welcome.

M A K I N G  T H E  M O S T  O F  D A T A  S U R P L U S

4 5W W W. S P E E C H M A T I C S . C O M

P A R T  1 :  W H A T  T O  D O  W I T H  A L L  T H A T  D A T A ? 

EXPERT OPINION

Even hardware accelerants  
have their limits.
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Does all that  
data even help?

The previous discussion has the implicit assumption 
that more data leads to better models and artificial 
intelligence systems. This has led to the presumption 
that always throwing more data at a problem will lead 
to better results. However, that is not necessarily the 
case. If your data is of poor quality, adding more of it 
may actually harm your performance as your model 
will learn irrelevant or even incorrect associations. 

Alternatively, if your data is of high 
quality but all very similar to each 

other, then adding more of it will not 
help – your model will have learned 
one particular pattern very well, but 
slightly atypical examples at run time will 
confuse it.

To continue advancing the field we are 
going to have to start thinking about 
solutions to our excess of data. I will 
cover three possibilities. The first is how 
to train on all of that data (Single Pass 
Training), the second is how to reduce 
your data down to just the examples 
that are most important (Filtering out 
rubbish) and the third is how to use an 
excess of data in one domain to improve 
performance in a different domain 
(Domain Adaptation).

Single Pass Training

The simplest solution to having too 
much data to train on is to break the 
paradigm of training to convergence and 
where progress is measured in terms of 
the number of epochs completed. An 
epoch is a full pass over all your available 
data, updating your parameters as 
you go along. Typically, you use many 
epochs to converge your model towards 
an optimal solution, where convergence 
is defined as occurring when an epoch 
no longer improves your model on some 
validation dataset compared to the 
previous epoch.

If you have very large amounts of data, 
this level of iteration to convergence 
over your training set may not be 
possible within your hardware and time 
constraints. This is starting to become 
the norm in machine translation for 
example, where users are talking in terms 
of number of hours or days a model has 
been trained for, rather than the number 

of epochs. To make this work practically, 
you need to have regular checkpointing, 
rather than waiting until the end of 
an epoch as was historically standard 
practice. This means outputting interim 
models at regular points – perhaps after 
every few hours or after a set number 
of pieces of data have been processed 
– then benchmarking those models 
against a validation set to track progress 
to convergence and also whether any 
hyperparameters need to be dynamically 
adjusted, such as learning rate decay.

These changes are not yet available 
‘off the shelf’ in most machine learning 
toolkits. In the main, the paradigm of 
training multiple epochs over your data 
still rules. You may need to either hack 
the code to make it possible or adjust 
how you deal with your data - perhaps 
chunking your data into pieces and 
feeding in one at a time, ‘tricking’ your 
model into thinking each one is a full 
epoch.

In the extreme, this can be pushed to 
single pass training, where your models 
only ever see any individual piece of 
data once. This can work if your data 
is all of equal quality and relevance to 
your use case and there are no particular 
constraints on the order you train over it.

However, it is rarely the case that all 
of your data is of equal quality and 
relevance for your use case, which 
brings us to the next couple of tricks.
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KEY POINT

This is a key point, so we’ll state it again:  
More data does not always lead  

to improved performance.
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Part 2

Filtering  
out rubbish

The truth is that a lot of your data is 
probably bad data. That is not your fault. 
You did your best.

But sometimes your HTML parser barfs on a particular 
malformed website. Or an angry user abuses your 
web feedback form. These things happen, but 
regardless of cause, you don’t want to train on that 
particular piece of data. If you could filter out all that 
rubbish you would not only reduce the amount of 
computational resource you need to build models 
on it, you would also end up with better models as 
they won’t be misled by training on bad examples.

This is becoming a big enough task, that this year’s 
World Machine Translation conference had a corpus 
filtering competition for machine translation data. 
The task was to take 1 billion words of supposedly 
parallel English-German data that had been roughly 
scraped from the web and automatically filter it down 
to smaller corpus sizes. I entered that competition 
as part of a team and have some tips coming out the 
back of it.

M A K I N G  T H E  M O S T  O F  D A T A  S U R P L U S P A R T  2 :  F I L T E R I N G  O U T  R U B B I S H

8 9W W W. S P E E C H M A T I C S . C O MS P E E C H M A T I C S  H O W  T O  S E R I E S



M A K I N G  T H E  M O S T  O F  D A T A  S U R P L U S

1 0

P A R T  2 :  F I L T E R I N G  O U T  R U B B I S H

1 1W W W. S P E E C H M A T I C S . C O M

First off, start simple.

You don’t necessarily need to break 
out Tensorflow and start training deep 
convolutional Siamese networks to 
discriminate your good from your bad 
data immediately. Our first step was 
to devise a bunch of simple rules that 
quickly eliminated the worst examples. 
The nature of these rules will depend 
on your particular use case, so use your 
common sense and old-fashioned 
eyeballing of the data.

For our machine translation corpus, 
for example, we could pretty quickly 
see that some sentences were not 
correct translations of one another 
simply because their lengths were 
very different, so we eliminated any 
sentence pairs for which one side was 
much longer than the other. Other rules 
were similar – we used edit distance to 
check for non-translation, simple regex 
to check digits matched, an off the shelf 
language identifier to eliminate badly 
labelled data – and quickly we had 
reduced our corpus to less than a fifth  
of its original size.

Once you have reduced your corpus 
using simple rules, there may be more to 
be gained by more intelligent methods. 
One of the more straightforward 
methods is to use your final task as a way 
to filter your training data. By this I mean 
train a model to solve whatever problem 
you are attempting to solve and then 
use that model on your training data to 
identify good and bad data examples.

So far, the discussion has considered 
pre-processing the data, but the 
technique of removing low/high 
classifier confidence examples is also 
starting to be used on the fly during 
training. Recent papers have shown 
great benefit in adapting which data 
you train on as you go along. Between 
epochs, you could check which of your 
training data you are struggling on and 
overemphasise those in the next epoch, 
whilst down-weighting those that the 
model is already very confident in.

Curriculum learning is a recent advance 
that takes this a step further and orders 
the training examples you present to 
your model training, with simple ones 
coming earlier in the training regime 
and more difficult ones later. This can be 
compared to how we learn at school or 
university – starting from more simple, 
general examples then gradually moving 
to more nuanced and difficult tasks as we 
learn more. The early examples lead to 
generalised abstractions, which are then 
useful in understanding and modelling 
the more complex or unusual examples 
later in the curriculum.

S P E E C H M A T I C S  H O W  T O  S E R I E S

AN EXPLAINATION BY EXAMPLE

This is probably best explained by 
example. Let’s assume we are building 
an ant photograph classifier. We have lots 
of photographs of different ants, each 
labelled with the species of the ant in the 
picture. However, we notice that some of 
the photographs have been mislabelled, 
and some are not even of ants at all! Once 
we have used simple rules to eliminate the 
worst offenders, we are left with a smaller 
dataset that we still believe to have 
some bad data in it. So, we build an ant 
photograph classifier on the mixed data 
we have. We may choose to make this a 
smaller than normal model or build on a 
randomly selected subset of the data to 
save time and resources. We then apply 
that classifier on our source data, applying 
probabilistic labels to each photograph. 
There are two types of data we may  
want to remove. 

The first is that for which the classifier 
disagrees very strongly with the data 
label. In this case, the data label is 
probably incorrect (perhaps the 

photograph is of a termite rather than an 
ant?) and so that data should be removed. 
We should note though that we do have 
to be careful that we aren’t removing 
correctly labelled examples that happen 
to be unusual (for example an Army Ant 
photographed from below when most of 
the images are from above). These unusual 
examples are extremely valuable to keep – 
some form of tradeoff often needs to take 
place here which you will need to tune for  
your own use case.

The second is that you might actually want to 
remove some of the examples for which the 
classifier very strongly agrees with the data. 

In this case training on that particular 
example is probably not adding much to 
the overall model, and by removing it you 
will be allowing your model to generalise 
better, by instead emphasising the diversity 
of your dataset. Keeping just the examples 
that the classifier already does well on will 
not give the best overall performance in  
real world tests.



Part 3 Domain 
adaptation
It may be that your large amounts of data 
are just not the type of data you think 
you need. Don’t despair!

There are ways you may be able to use it anyway. 
In my primary field of speech recognition, this is a 
common occurrence –  I may have lots of recordings 
of people speaking on broadcast news, for example, 
but few examples of people talking on a telephone, 
which may be the area I really want to target. In 
this case, you need to leverage that larger ‘out-of-
domain’ corpus by taking the smaller ‘in-domain’ 
corpus as a reference.

M A K I N G  T H E  M O S T  O F  D A T A  S U R P L U S P A R T  3 :  D O M A I N  A D A P T A T I O N

1 2 1 3W W W. S P E E C H M A T I C S . C O MS P E E C H M A T I C S  H O W  T O  S E R I E S



M A K I N G  T H E  M O S T  O F  D A T A  S U R P L U S

1 4

P A R T  3 :  D O M A I N  A D A P T A T I O N

1 5W W W. S P E E C H M A T I C S . C O M

In the simple case, this may just mean 
paying attention to any metadata you 

have. If you have data prelabelled in 
different categories, you may be able to 
simply select data that is close enough to 
your target domain that way. However, 
this throws away a lot of the use that  
the larger pool of out-of-domain data 
might offer.

The next step – which we at 
Speechmatics regularly use in our 
language modelling – is domain filtering. 
This means taking your small in-domain 
corpus and filtering your larger out-of-
domain corpus against it to find the 
subset of the data that is most similar. 
For language modelling we do this by 
entropy filtering. Entropy filtering works 
by building small language models on 
both your in and out-of-domain corpora. 
Then you measure how well each 
model performs when modelling every 
sentence in the out-of-domain corpus. 
Those sentences for which the difference 
between these two measures is below  
a certain threshold are kept and the 
others discarded. This then leads to 
a smaller corpus which actually gives 
better results than using the entire  
out-of-domain corpus, as well as a 
smaller training footprint.

An even further step is to map 
your out-of-domain data into 
the same space as your in-
domain data. 

Correlation Alignment (CORAL) is a 
‘frustratingly easy’ first technique you 
could use. It’s called ‘frustratingly easy’ 
because it can be implemented in as 
little as 4 lines of MATLAB code and 
outperforms many more complex 
methods! The core algorithm can be 
understood as first whitening your out-
of-domain data then, re-colouring it with 
the covariance of the in-domain data 
and has been shown to be surprisingly 
effective in fields such as object 
recognition from images. 

Other methods have also been shown 
to be effective – such as subspace 
alignment, where both in and out-of-
domain data are mapped to a shared 
subspace and that mapping is iteratively 
repeated until the distance between 
the two datasets is minimised. The 
performance is typically improved 
by use of ‘anchor’ examples which 
can be used to measure how well 
the two datasets have mapped onto 
one another. Facebook’s MUSE uses 
similar techniques to map vectoral 
representations of words in different 
languages onto one another, with 
improved performance by providing an 
initial seed dictionary of translations.

Finally, if you have already trained a 
model for a different task using your 
large dataset, you can use transfer 
learning. This means training a model for 
a particular task and/or domain and then 
using that model as the basis for your 
target task or domain. In the simplest 
case, this means training a model 
on your out-of-domain dataset then 
retraining the weights on your in-domain 
dataset, essentially using the larger 
dataset to produce sensible initial values 
for your final model.

A really interesting example of transfer 
learning I found recently took this even 
further. The task was discrimination 
of audio clips into classes, with not 
much data available to train on. Rather 
than try to leverage audio data, they 
took the interesting step of stepping 
really far out-of-domain – into image 
recognition. They took spectrographic 
representations of their audio signals, 
turned them into images with a green 
tint, then used a pre-trained and very 
accurate image classifier as the basis for 
the audio classifier! The system trained 
to classify images was able to break the 
spectrogram images into useable sub 
features sufficiently well to massively 
improve performance over just using the 
limited dataset. This really shows that 
if you have sufficient data in any task, 
it may be worthwhile to leverage it in 
completing any other limited data tasks 
you have.
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Conclusions We all know data is hugely valuable 
to those of us training artificial 
intelligence systems of any kind.  
Too much data can feel like a burden, 
either in training time, hardware 
requirements or simply output 
model size. However, I hope that 
over our three-part series I have 
shown you some tips for how to 
deal with that data. Whether that be 
reducing the data size into a highly 
efficient subset or using the data 
to bootstrap models in radically 
different domains and tasks…

…I hope you can learn to  
love your big data again.
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